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The linear inviscid instability of an infinitely thin vortex sheet, periodically corrugated
with finite amplitude along the spanwise direction, is investigated analytically.
Two types of corrugations are studied, one of which includes the presence of an
impermeable wall. Exact eigensolutions are found in the limits of very long and of very
short wavelengths. The intermediate-wavenumber range is explored by means of a
second-order asymptotic series and by limited numerical integration. The sheets are
unstable to both sinuous and varicose disturbances. The former are generally found
to be more unstable, although the difference only appears for finite wavelengths. The
effect of the corrugation is shown to be stabilizing, although in the wall-bounded sheet
the effect is partly compensated by the increase in the distance from the wall. The
controlling parameter in that case appears to be the minimum separation from
the sheet valley to the wall. The instability is traced to a pair of oblique Kelvin–
Helmholtz waves in the flat-sheet limit, but the eigenfunctions change character both
as the corrugation is made sharper and as the wall is approached, becoming localized
near the crests and valleys of the corrugation. The study is motivated by the desire to
understand the behaviour of lifted low-speed streaks in wall-bounded flows, and it is
shown that the spatial structure of the fundamental sinuous eigenmode is remarkably
similar to previously known three-dimensional nonlinear equilibrium solutions in both
plane Couette and Poiseuille flows.

1. Introduction
An aspect of wall turbulence that has recently been the subject of much attention is

the presence of self-sustaining coherent structures that appear to control the near-wall
flow dynamics. The dominant structures are elongated streamwise velocity streaks and
longitudinal vortices. The low- and high-velocity streaks are arranged alternately in
the spanwise direction (Kline et al. 1967), while shorter streamwise vortices of both
signs are typically staggered alongside them (Stretch 1990; Jiménez & Moin 1991;
Jeong et al. 1997).

It is generally believed that streaks and vortices are involved in a nonlinear self-
sustaining cycle that maintains near-wall turbulence (Jiménez 1994; Hamilton, Kim &
Waleffe 1995; Waleffe 1997; Kawahara & Kida 2001). A collection of papers
developing this point of view has been edited by Panton (1997).

It has long been recognized that the streaks are generated by cross-flow advection of
the gradient of the streamwise velocity by the streamwise vortices (Kline et al. 1967;
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Bakewell & Lumley 1967). Low-speed fluid is lifted away from the wall, producing a
low-speed streak, while high-speed fluid is pushed towards the wall, creating a high-
speed one. This process leads to an overall increase of mean wall shear, and is the
essential ingredient in the generation of turbulent wall drag (Orlandi & Jiménez 1994).
Much effort has, therefore, been devoted to elucidating the dynamics of streamwise
vortices, with a view to understanding and controlling near-wall turbulence, but there
is still no general agreement about the mechanisms by which they are produced or
reproduced.

In their direct numerical simulations of highly constrained plane Poiseuille
turbulence, Jiménez & Moin (1991) examined the dynamics of near-wall structures in
detail. They minimized the streamwise and spanwise dimensions of a computational
periodic box to the size in which turbulence was just sustained, and obtained a flow
consisting of an array of identical structures. They observed that, when the low-speed
streak bends in the spanwise direction, the flow becomes highly three-dimensional, and
new streamwise vortices are generated by vortex stretching. Although other plausible
mechanics for vortex generation have been proposed, such as the effect of the outer
flow (Sreenivasan 1988), or the reaction of the no-slip wall (Brooke & Hanratty 1993),
a recent study by Jiménez & Pinelli (1999) demonstrates that vortex generation is
predominantly associated with the presence of streaks in the buffer layer.

Hamilton et al. (1995) used the same technique as Jiménez & Moin (1991) to
investigate the generation mechanism of streamwise vortices in a minimal plane
Couette flow. Their most important finding, from the point of view of the present
paper, was that a purely two-dimensional flow containing only straight streaks in
addition to the mean flow is linearly unstable. The instability takes the form of
a sinuous (bending) disturbance of the streak. The subsequent nonlinear three-
dimensionalization creates streamwise vortices which in turn regenerate the streaks,
completing the self-sustaining cycle.

This finding suggests that the sinuous instability of a straight streak is at the
origin of the generation of streamwise vortices in the buffer layer (Waleffe 1997).
The vortices themselves seem to be necessary only for preventing streaks from being
damped by viscous diffusion (Itano & Toh 2001).

There is a substantial body of work on the linear instability of model streaks
with smooth velocity fields, much of it oriented towards the prediction of bypass
transition in boundary layers. Waleffe (1995, 1997) and Waleffe & Kim (1997)
numerically analysed one such model in a low-Reynolds-number plane Couette flow,
and conjectured that the instability originates from the inflectional layers of wall-
normal vorticity which separate the low- from the high-speed streaks. This wake-like
instability had first been proposed by Swearingen & Blackwelder (1987), who studied
the streaky structures caused by Görtler vortices in a boundary layer. The associated
inviscid stability problem was first considered by Hall & Horseman (1991), who
concluded that the breakdown was instead most probably due to the horizontal layer
of enhanced spanwise vorticity above the streak. Later work has shown that both
mechanisms can be important depending on the parameters of the base flow, and
that different modes can be qualitatively associated with different locations on the
periphery of the streak. For a recent summary see Reddy et al. (1998). The vortices
generated by this instability mechanism should be normal to a wall, but they would
be tilted and stretched in the streamwise direction under the action of the mean shear
(Jiménez 1994).

Schoppa & Hussain (1997, 1998), on the other hand, investigated the instability of a
model streak in a minimal plane Poiseuille flow, and showed that, although their base
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flow was strictly unidirectional, the unstable sinuous eigenstructures appearing in the
linear stage of the growth were already dominated by layers of streamwise vorticity.
They noted the similarity of those structures with the oblique modes observed after
roll pairing in plane mixing layers, and conjectured that the instability of the streaks
could be linked to that process, rather than to the wake-like mechanism mentioned
above (Schoppa, Hussain & Metcalfe 1995). This group was also the first to explicitly
propose the modelling of the buffer-layer streaks by a corrugated shear layer and to
confirm numerically the similarity of the eigenfunctions in the three cases (Schoppa
2000; Schoppa & Hussain 2002). They introduced a corrugated coordinate system
referenced to the base-flow vortex lines to demonstrate the vorticity dynamics in the
instability, as well as in the transient growth of linear perturbations.

Since the various mechanisms discussed above are in principle different, one of
the purposes of the present paper is to clarify the origin of the streak instability by
analysing a simple flow whose behaviour can be studied as thoroughly as possible.
Such studies are useful because it cannot be automatically assumed that the smooth
models used for the streaks in the studies mentioned above are necessarily realistic,
and it is not known how their details influence their stability. This became apparent,
for example, in the analysis by Kawahara et al. (1998) of a smooth model very similar
to the one used by Schoppa & Hussain (1997). They found at least three different
instability mechanisms that could be distinguished by discontinuities in the neutral
surface, and which were associated with different ranges of the spanwise wavelength.

Consider for example the problem of whether a most unstable wavelength exists.
In a plane vorticity layer the only relevant length is the layer thickness, and it can
safely be predicted that the perturbation wavelength should be normalized with it.
In the present case two additional length scales are the spanwise wavelength and of
the distance to the wall. All the analyses mentioned above were done numerically for
particular families of continuous velocity profiles in which those three scales could not
easily be varied independently. Schoppa & Hussain (2002), for example, numerically
explored the dependence of the growth rate on the longitudinal wavelength of the
perturbations and on the amplitude of the streak but, while they found an optimal
wavelength for a given amplitude, they only then explored the effect of that amplitude
for that particular wavelength. They parameterized their velocity profiles in terms of a
particular elevation angle of the vortex surfaces, but it is difficult in this kind of
analyses to distinguish whether the optimal wavelength is a function of the curvature
of the isosurfaces, of their lifting above the wall, or even of the ratio of any of
these quantities with the thickness of the shear layer. Analytic solutions do not sufer
from these limitations and, while it is clear that they can also be only found for
particular velocity distributions, they easily allow questions such as what is the effect
of curvature or of lifting to be answered.

All the instability mechanisms mentioned above are inflectional, and thus most
probably independent of the effect of viscosity (see Schoppa & Hussain 1997). We
shall therefore only analyse inviscid models, and in particular we shall represent the
streak by an infinitely thin vortex sheet, corrugated along the spanwise direction and
adjacent to a slip wall. The simplicity of the model allows us to obtain full analytical
expressions for the eigensolutions, at least in the limits of long or short waves, and
to separate the effect of sheet curvature from those of wall distance. The analysis is
done in two stages. The technique is first developed for a free sheet in the absence of
a wall. Only later is the influence of the wall included.

This approximation restricts the practical applicability of our results to the case of
long waves. This will be the limit studied in the paper, but it is also the case observed
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in experiments. It is well known that vortex sheets are ill-posed, in the sense that
the most unstable wavelengths are the shortest ones, with growth rates that become
unbounded in that limit and which lead to the finite-time formation of singularities
(Moore 1979; Cowley, Baker & Tanveer 1999). We will see that the linear result on
the high-wavenumber limit of the instability also holds for the corrugated sheets, so
that we will not be able to speak about maximum growth rates. Those are determined
in real flows by the thickness of the vortex layer, or by viscosity.

It should be noted that, although our motivation is primarily to understand the
behaviour of wall flows, the corrugated vortex sheet is itself of some importance,
having for example been used by Lasheras & Choi (1988) to inject streamwise
vorticity in free shear layers. That effect was later used commercially to control large-
scale mixing and noise generation. We are not aware of any analysis of the stability of
that flow, although the simpler case of the non-uniform planar layer was analysed first
by Hocking (1964) in the vortex-sheet approximation, and more recently by Saxena,
Leibovich & Berkooz (1999) in an inviscid smooth one. Both find an enhancement of
the instability, although it will be seen below that we find the effect of the corrugation
to be stabilizing.

There are in fact relatively few examples of fully two-dimensional base flows whose
stability characteristics are known, and the final goal of our paper is to add to
the understanding of how they differ from the more classical one-dimensional ones,
particularly regarding the generation of streamwise vorticity.

The organization of the paper is as follows. In § 2 we derive the linearized equations
for the perturbations of the corrugated vortex sheet, and introduce the conformal
mapping used for the definition of the geometry. The asymptotic solution of the
problem in the limit of very small wavenumbers is developed in § 3, both for
sinuous and for varicose perturbations. The influence of the impermeable wall is
considered in § 3.3. The higher-order corrections to the eigenvalues are derived in § 4,
which also briefly discusses some numerical results for the instability at intermediate
wavenumbers. The short-wavelength limit is analysed in Appendix A. Finally, in § 5,
we compare the linear eigensolutions with two previously published three-dimensional
nonlinear equilibrium solutions in Couette and Poiseuille flows, and offer conclusions.

2. Formulation
We shall consider an infinitely thin and smooth vortex sheet defined by S(y, z) = 0

(figure 1). The sheet is infinite and periodically corrugated with finite amplitude and
wavelength 2π in the spanwise direction z, and is uniform in the streamwise direction x.
The velocity is Uex , where U = ±1 respectively above and below the sheet, and ex

is the unit vector in the x-direction. Vorticity is confined to the sheet, and its x-
component is initially null. Such sheets are steady solutions of the Euler equation,
and may be regarded as the simplest models for the streaky structure observed in shear
flows, although they are different from the case of interest for turbulent transition, in
which the flow without streaks, i.e. without corrugation, is known to be stable.

2.1. Basic equations

Consider a general infinitesimal disturbance both to the location of the sheet and
to its circulation density. We will only consider perturbations in which the vorticity
remains confined to the perturbed sheet, so that there exists a velocity potential
φ(x, y, z, t) such that the disturbance velocity v(x, y, z, t) is expressed as v = ∇φ
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Figure 1. The configuration of a corrugated vortex sheet. The streamwise (x) component of
the velocity is ±1 above and below the sheet. One period of the infinite sheet is shown in the
z-direction.

outside the sheet, and

∇2φ = 0. (2.1)

If the disturbance decays as y → ±∞, the linearized Bernoulli equation yields(
∂

∂t
+ U

∂

∂x

)
φ + p = 0, (2.2)

where p is the pressure. Defining the perturbed vortex sheet by

S(y, z) + s(x, y, z, t) = 0, (2.3)

the function s must satisfy the linearized kinematic condition(
∂

∂t
+ U

∂

∂x

)
s +

(
∂φ

∂y

∂

∂y
+

∂φ

∂z

∂

∂z

)
S = 0 on S(y, z) = 0, (2.4)

because the sheet is a material surface.
We next write φ as a normal mode,

φ(x, y, z, t) = Re
{
φ̃(y, z) eiα(x−ct)

}
, (2.5)

where α is a real wavenumber and c is a complex phase velocity. Substituting this
expression, and similar ones for p and s, into (2.1), (2.2) and (2.4), we obtain(

∂2

∂y2
+

∂2

∂z2

)
φ̃ − α2φ̃ = 0, (2.6)

iα(U − c)φ̃ + p̃ = 0, (2.7)

iα(U − c)s̃ +

(
∂φ̃

∂y

∂

∂y
+

∂φ̃

∂z

∂

∂z

)
S = 0 on S(y, z) = 0. (2.8)

2.2. Conformal mapping

We introduce now the complex variable χ = y + iz in the cross-flow plane, and restrict
our analysis to sheets whose corrugation can be defined in terms of simple conformal
maps. Consider for example the mapping, ζ = η + iξ ↔ χ , given by

χ = 2 log
(
cos 1

2
ζ
)
, ζ = 2 arccos

(
eχ/2

)
, (2.9)

which maps the infinite periodic strip y ∈ (−∞, ∞), z ∈ (−π, π) into the semi-
infinite one ξ ∈ (0, ∞), η ∈ (−π, π). We define the undisturbed vortex sheet as the
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Figure 2. Iso-contours of ξ and η defined by the conformal mapping (2.9). One period is
shown in the z-direction. The dotted lines are η-contours. The dotted vertical lines at z = ±π
are η = ∓π. Otherwise, from right to left, η = kπ/6; k = −5(1)5. All the other lines are
ξ -contours. The solid vertical line at z = 0, y � 0 is ξ = 0. , ξ = 1

6
π; , ξ = 1

3
π;

, ξ = 1
2

π. These three values are used for the definition of the sheets in figure 3. The rest
of the solid isolines are ξ = kπ/6, k = 4(1)14, moving upwards.

isosurface

S(y, z) ≡ ξ − ξ0 = 0, (2.10)

where ξ0 > 0 is a constant which parameterizes the depth of the corrugation.
Figure 2 shows iso-contours of ξ and η in the (y, z)-plane. The ξ -contours, which

represent possible positions of the sheet, become flatter for ξ 	 1, with y ≈ ξ and
z ≈ −η, so that y → ∞ as ξ → ∞. For smaller ξ the corrugation becomes deeper and
the crests sharper. The limit y → −∞ is mapped into the points ζ = (2k +1)π, where,
and throughout the paper, k stands for an arbitrary integer.

The Jacobian J (ξ, η) of (2.9) is

J ≡ ∂(η, ξ )

∂(y, z)
=

∣∣cot 1
2
ζ
∣∣2 =

cosh ξ + cos η

cosh ξ − cos η
, (2.11)

and the mapping is singular both at y → −∞, ζ → (2k + 1)π, where J → 0, and at
(y, z) → (0, −2kπ), ζ → 2kπ, where J → ∞. The Fourier expansion of the reciprocal
of J will be needed later, and can be written as

J −1 =

∞∑
m=0

jm(ξ ) cos mη, (2.12)

with the Fourier coefficients

j0 = 1 + 2e−ξ / sinh ξ, jm = 4(−1)me−mξ/ tanh ξ (m � 1). (2.13)

By expressing (2.6) and (2.8) in the independent variables ξ and η we obtain(
∂2

∂ξ 2
+

∂2

∂η2

)
φ̃ − α2J −1φ̃ = 0, (2.14)
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−iα(U − c)ξ̃ + J
∂φ̃

∂ξ
= 0 on ξ = ξ0, (2.15)

where we have defined ξ̃ (η) = −s̃(y, z), and rewritten the perturbed sheet (2.3) as

ξ = ξ0 + Re
{
ξ̃ (η) eiα(x−ct)

}
. (2.16)

To obtain the matching conditions across the sheet, we express the velocity potential
above and below the vortex sheet as

φ̃(ξ, η) =

{
φ̃+(ξ, η) (ξ > ξ0)

φ̃−(ξ, η) (ξ < ξ0).
(2.17)

The continuity of the pressure in (2.7) yields

(1 − c)φ̃+ + (1 + c)φ̃− = 0 on ξ = ξ0, (2.18)

while the consistency of the kinematic condition (2.15) on the upper and lower
surfaces of the sheet results in

(1 + c)
∂φ̃+

∂ξ
+ (1 − c)

∂φ̃−

∂ξ
= 0 on ξ = ξ0. (2.19)

Equations (2.14), (2.18) and (2.19) define the eigenvalue problem for c.

2.3. Streamwise vorticity

It is important to realize that Squire’s theorem cannot be used in three-dimensional
situations, such as the present one, and that the eigenfunctions would in general be
oblique and contain streamwise vorticity. The vorticity ω can be expressed as

ω = Ωδ(l), (2.20)

where Ω denotes the circulation density vector, which is parallel to the sheet, l is the
distance along a unit vector l perpendicular to the sheet, and δ(l) is the Dirac delta
function. The circulation density is (see Saffman 1992, § 2.2)

Ω = l × [∇φ], (2.21)

where we have introduced the notation [ · ] for the jump of a quantity across the
sheet,

[∇φ] = ∇φ+|ξ=ξ0
− ∇φ−|ξ=ξ0

. (2.22)

The linearized expression of the streamwise component Ωx of the circulation density,
which gives the jump of the tangential velocity in the (y, z)-plane, is then

Ωx = −J 1/2|ξ=ξ0
Re

{[
∂φ̃

∂η

]
eiα(x−ct)

}
. (2.23)

3. The long-wavelength limit
The structures observed in wall-bounded flows are long, with streamwise

wavelengths of the order of three or four times the streak spacing (Jiménez &
Moin 1991; Schoppa & Hussain 1997), and it was shown that those wavelengths are
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comparable to the streamwise wavelength for the most unstable viscous eigenfunctions
of model streaks (Kawahara et al. 1998; Schoppa 2000; Schoppa & Hussain 2002).
We can expect that any shorter eigenfunctions which appear in the inviscid analysis
will be strongly damped by viscosity.

Guided by these considerations we shall first study the long-wave limit of the
eigenvalue problem, α � 1, and look for asymptotic solutions of the form

φ̃± = α
(
φ̃

±
0 (ξ, η) + α2φ̃

±
2 (ξ, η) + · · ·

)
, (3.1)

c = c0 + α2c2 + · · · , (3.2)

with the sheet located at

ξ̃ = ξ̃ 0(η) + α2ξ̃ 2(η) + · · · . (3.3)

A possible solution with c = O(α−1) and φ̃ = O(1) is trivial and has not been included

in the expansions. Indeed, if c−1 = 0 it follows from (2.15) that ∂φ̃/∂ξ = 0 on the

upper and the lower surfaces of the vortex sheet, so that φ̃ is identically zero under

the conditions that φ̃ → 0 at y → ±∞. On the other hand, if c−1 �= 0, the leading

orders of (2.18) and (2.19) imply that both φ̃ and ∂φ̃/∂ξ are continuous across the

sheet, which again means that φ̃ is identically zero.
Substituting (3.1) and (3.2) into (2.14), (2.18) and (2.19), and separating orders, we

have to O(1), (
∂2

∂ξ 2
+

∂2

∂η2

)
φ̃

±
0 = 0, (3.4)

(1 − c0)φ̃
+
0 + (1 + c0)φ̃

−
0 = 0 on ξ = ξ0, (3.5)

(1 + c0)
∂φ̃+

0

∂ξ
+ (1 − c0)

∂φ̃−
0

∂ξ
= 0 on ξ = ξ0, (3.6)

and to O(α2), (
∂2

∂ξ 2
+

∂2

∂η2

)
φ̃

±
2 = J −1φ̃

±
0 , (3.7)

(1 − c0)φ̃
+
2 + (1 + c0)φ̃

−
2 = c2[φ̃0] on ξ = ξ0, (3.8)

(1 + c0)
∂φ̃+

2

∂ξ
+ (1 − c0)

∂φ̃−
2

∂ξ
= −c2

[
∂φ̃0

∂ξ

]
on ξ = ξ0. (3.9)

We shall study first the leading-order problem (3.4)–(3.6).

3.1. Leading order

It follows from the symmetry of the base flow that the sinuous modes, for which φ̃ is
odd with respect to η = kπ (z = kπ), can be treated independently from the varicose

ones for which φ̃ is even. The former are probably related to the observations of
wavy streaks mentioned above, while the latter should rather be connected with the
generation of the hairpin vortices described for example by Acarlar & Smith (1987)
and Asai, Minagawa & Nishioka (2002). Consider first the sinuous case, for which
the velocity potential may be written in terms of normal modes as

φ̃
±
0 = φ̃

±
0,n(ξ ) sin nη (n = 1, 2, 3, . . .), (3.10)



Linear instability of a corrugated vortex sheet 323

but note that these are not pure spanwise modes in physical space (i.e. sin nη �= sin nz).
Substitution of (3.10) into (3.4) leads to(

d2

dξ 2
− n2

)
φ̃

±
0,n = 0, (3.11)

which has solutions

φ̃
±
0,n = A e+nξ + B e−nξ , (3.12)

where A and B are arbitrary constants.

Since φ̃
±
0 are analytic functions of ζ , the modal ‘complex velocity’ in the (y, z)-plane

is given by

ṽ − iw̃ =
dζ

dχ

(
∂φ̃

±
0

∂η
− i

∂φ̃
±
0

∂ξ

)
= − cot 1

2
ζ

(
nφ̃

±
0,n cos nη − i

dφ̃
±
0,n

dξ
sin nη

)
. (3.13)

Thus, in order for the disturbance velocity to be regular at ζ = 2kπ we must have

φ̃−
0,n(0) = 0. (3.14)

It then follows from (3.13) and (3.14) that the velocity decays as y → −∞, i.e.

ζ → (2k + 1) π, if dφ̃−
0,n/dξ is finite at ξ → 0. On the other hand, for the velocity to

decay at y → ∞, i.e. ξ → ∞, we need

φ̃+
0,n(∞) = 0. (3.15)

We therefore take the velocity potential below and above the vortex sheet as

φ̃−
0,n = A− sinh nξ, φ̃+

0,n = B+ e−nξ . (3.16)

Substituting (3.16) into the matching conditions (3.5) and (3.6), we obtain

(1 − c0) e−nξ0 B+ + (1 + c0) sinh nξ0 A− = 0, (3.17)

− (1 + c0) e−nξ0 B+ + (1 − c0) cosh nξ0 A− = 0, (3.18)

which determine the leading-order eigenvalues

c0 = e−2nξ0 ± i
(
1 − e−4nξ0

)1/2
, (3.19)

and the corresponding eigenfunctions

φ̃−
0,n = C(1 − c0) e−nξ0 sinh nξ, φ̃+

0,n = −C(1 + c0) e−nξ sinh nξ0, (3.20)

where the constant C is arbitrary.
The varicose mode can be treated in a similar way. The potential has the form

φ̃0 =

φ̃+
0,n(ξ ) cos nη + (−1)n

1 + c0

1 − c0

φ̃−
0,n(0) (ξ > ξ0)

φ̃−
0,n(ξ ) cos nη − (−1)nφ̃−

0,n(0) (ξ < ξ0)

(n = 1, 2, 3, . . .), (3.21)

which should vanish as ζ → (2k + 1)π, i.e. y → −∞, so that J −1φ̃ remains finite in
(2.14). The resulting eigenvalues and eigenfunctions are

c0 = −e−2nξ0 ± i
(
1 − e−4nξ0

)1/2
, (3.22)

and

φ̃−
0,n = C(1 − c0) e−nξ0 cosh nξ, φ̃+

0,n = −C(1 + c0) e−nξ cosh nξ0. (3.23)
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At this level of approximation, the imaginary parts of c0, and therefore the growth
rates, are identical for the varicose and for the sinuous modes, and both cases differ
only in the sign of the real phase velocity. Note that in this approximation the n = 0
varicose mode is neutral with trivial eigenfunctions, except in the strictly flat-sheet
limit ξ0 → ∞.

3.2. The structure of the eigenfunctions

In the limit nξ0 → ∞, all of the above eigenvalues become identical to those for the
Kelvin–Helmholtz (K–H) instability of a flat vortex sheet, c0 = ±i. For nξ0 	 1 and
nξ 	 1 the corresponding eigenfunctions are proportional to

φ̃−
0,n = ±i en(ξ−ξ0), φ̃+

0,n = e−n(ξ−ξ0), (3.24)

which also coincide with those of a flat sheet. This limit can occur in two ways
which are in principle distinct, and which actually become so at higher orders of the
α-expansion. If ξ0 → ∞ the sheet is flat, and the eigenmodes are pairs of oblique
K–H waves with wave vectors (α, ±n). If n 	 1, even if the sheet is corrugated,
the eigenfunctions have spanwise wavelengths which are short enough not to feel the
curvature, and therefore behave as if the sheet were locally flat. The same is true
in the limit of very short streamwise wavelengths, α 	 1, which also tends to K–H
instability, and which is treated in Appendix A.

A few points should be mentioned. In the first place, the effect of the corrugation is
always stabilizing, and the maximum growth rate, α Im(c), is attained in the flat-sheet
limit. This contradicts the experimental observation that streaks lift before bursting,
and will be discussed in § 3.3. The effect is strongest for the low-order spanwise
modes, and suggests that the initial breakdown of the streaks should be highly
wrinkled, also contrary to observation. That conclusion is however most probably
spurious, essentially similar to the property that the shortest waves are the most
amplified in a flat sheet. That behaviour is linked to the zero thickness of the vorticity
layer. If the velocity profile is made smooth, short waves are damped, and the most
unstable wavelength is a low multiple of the layer thickness. That calculation is
beyond the scope of this paper, but the same effect is likely to occur in the present
case.

There is finally the question, posed in the introduction, of the ‘family’ to which the
present instability belongs; whether to the ‘wake family’ proposed by Swearingen &
Blackwelder (1987), or to the ‘oblique K–H’ one suggested by Schoppa & Hussain
(1997). As with most taxonomical questions, the present results suggest that the
truth is more a matter of terminology than of hard science. Our eigenvalues can
be connected continuously with oblique K–H waves in the limit in which ξ0 	 1,
and with two-dimensional K–H waves in the opposite limit in which n and ξ0 are
kept constant and α is made large. For intermediate values of those parameters, even
though the traces of a pair of oblique K–H waves can be seen in the eigenmodes for
relatively small corrugations (see figure 3a–d), the eigenfunctions do not completely
agree with any of those limits, and all that can be said is that they are variants of the
K–H family.

Consider the spatial structure of the eigenfunctions. From (2.15) we obtain the
perturbation to the location of the sheet as

ξ̃ 0 = −i
J |ξ=ξ0

U − c0

∂φ̃0

∂ξ

∣∣∣∣
ξ=ξ0

, (3.25)
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which, using the results of the previous section for the sinuous perturbation, leads to

ξ = ξ0 + 2−1/2ne−nξ0J |ξ=ξ0
sinh1/22nξ0 sin nη Re

{
C eiα(x−ct)

}
. (3.26)

The result for the varicose mode is similar, with cos nη substituted for the sine. The
streamwise circulation density for the sinuous mode is obtained to leading order from
(2.23) as

Ωx = 2nαe−nξ0J 1/2
∣∣
ξ=ξ0

sinh nξ0 cos nη Re
{
C eiα(x−ct)

}
, (3.27)

and for the varicose one as

Ωx = −2nαe−nξ0J 1/2
∣∣
ξ=ξ0

cosh nξ0 sin nη Re
{
C eiα(x−ct)

}
. (3.28)

Figure 3 shows the fundamental (n = 1) sinuous and varicose eigenstructures for
ξ0 = 1

2
π, 1

3
π and 1

6
π. The figure includes the perturbed vortex sheet, its streamwise

circulation density, and the disturbance velocities in a cross-plane. For the less
corrugated sheet in figures 3(a) and 3(b), the positive and negative streamwise
vorticities are arranged in a checkerboard pattern which is strongly reminiscent
of a pair of oblique K–H instability waves. As ξ0 is made smaller, and the sheet
becomes more corrugated in figure 3(c–f ), the disturbance vorticity becomes localized
near the crest of the sheet, and the pattern differs from that of oblique K–H waves.
This behaviour stems from the properties of the Jacobian. As ξ0 decreases and the
corrugation becomes sharper, the Jacobian (2.11) becomes larger near the crests, and
it follows from (3.26)–(3.28) that both the sheet deformation and the streamwise
vorticity tend to concentrate where J is largest.

It is interesting to compare the magnitude of (3.27) and (3.28) with the other
components of the perturbation vorticity. Consider for example the spanwise
component Ωz which is of order lyα

2[φ0], where ly is the vertical component of
the unit vector normal to the sheet, and is always O(1). The magnitude of (3.27) is
Ωx ≈ J 1/2nα[φ0], so that their ratio is Ωx/Ωz ≈ nJ 1/2/(αly). When the corrugation of
the sheet is small this ratio is O(n/α), as it would be for classical oblique waves but,
as the corrugation increases and J becomes locally large, the streamwise vorticity
becomes the dominant component.

Although our simplified model is too different from the fairly low-Reynolds-number
streaks of real wall layers to allow useful quantitative comparisons, some qualitative
remarks can be made. If we assume that the near-wall streaks have a spanwise spacing
of 100 wall units, and a height of around 40, which is typical of the buffer layer,
their aspect ratio would be around 0.4. This is in between the cases in figures 3(c)
and 3(e), and the eigenfunction in figure 3(c) is indeed remarkably similar to those
found for model streaks by Waleffe & Kim (1997) and Schoppa & Hussain (1997).
The alternation of streamwise vortices of opposite signs along the crest induces in the
streak a sinuous deformation which is also reminiscent of observations at an initial
stage of the streak instability. Further comparisons with known nonlinear solutions
of the Navier–Stokes equations will be made in § 5.

3.3. The influence of the wall

We have noted above that the result that the corrugation of the vortex sheet is
stabilizing is difficult to reconcile with the experimental evidence. It has been clear
since the initial observations of Kim, Kline & Reynolds (1971) that the instability
of the streaks is enhanced when they are lifted away from the wall, and it is at that
moment that the corrugation of the vorticity layer is largest. The problem with our
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previous analysis is that, although the corrugation of the vorticity layer representing
the streak was incorporated into (2.9), the wall was not.

The presence of a nearby wall inhibits instability. In the inviscid approximation
used in this paper, the instability of a flat vortex sheet, lying initially at a distance H

from a wall, is equivalent to the varicose mode of a plane jet with the top-hat velocity
profile

U = 1 when |y| > H, U = −1 otherwise. (3.29)

Its eigenvalues were shown by Rayleigh (1879) to be

c = − exp(−2αH ) ± i(1 − exp(−4αH ))1/2, (3.30)

where α2 = α2 + β2, and β is the spanwise wavenumber. The imaginary part of (3.30)
asymptotes to ci = ±1 when αH 	 1, as in the classical K–H case, but decreases
rapidly when αH � 1, and vanishes when the sheet coincides with the wall. When a
streak is lifted, it is therefore subject to two opposing effects. Moving away from the
wall makes it more unstable, while the warping stabilizes it. To explore the interaction
between these two effects we introduce a new conformal map,

χ = log sin

(
ia + ζ

2

)
− log sin

(
ia − ζ

2

)
, (3.31)

where a � 0. This map is anti-symmetric with respect to ζ = 0, and periodic in η

and z with period 2π (figure 4a), with a branch cut connecting through infinity the
two singularities ζ = ±ia. Only isolines ξ = ξ0 for which −a < ξ0 < a define singly
connected vortex sheets, in which case the isoline ξ = −ξ0 defines another sheet which
is the reflection of the first one with respect to y = 0. The limits y → ±∞ map into
ζ = 2kπ ± ia, and the z-axis maps into ξ = 0. Flat sheets are obtained in the limit of
constant ξ0 and a → ∞ (figure 4b).

We can therefore construct flow fields which are consistent with an inviscid wall
along the z-axis by using velocity potentials which are symmetric in ξ . We shall
assume that the velocity jump is defined as in (3.29),

U = 1 when |ξ | > ξ0, U = −1 otherwise. (3.32)

Figure 3. Unstable fundamental eigenstructures of a corrugated vortex sheet for n = 1. The
streamwise circulation density in the perturbed vortex sheet is shown for: (a, b) ξ0 = 1

2
π, (c, d)

1
3

π, and (e, f ) 1
6

π. Red is positive and blue is negative. See figure 2 for the unperturbed shapes
of the vortex sheets. (a, c, e) Sinuous modes. (b, d, f ) Varicose modes. The disturbance velocity
vectors, in a frame of reference moving with the real part of the phase velocity, are shown in
the plane x = 0. One wavelength is shown both in the x- and in the z-direction.

Figure 10. Three-dimensional nonlinear equilibrium solutions for wall-bounded shear flows.
(a) Nagata’s (1990) (lower-branch) stationary solution to a plane Couette system. (b) Toh &
Itano’s (1999, 2001) travelling wave solution to a plane Poiseuille system. The upper (lower)
wall moves into (out of) the page in (a), while the flow is into the page in (b). The streamwise
vorticity is shown on the critical layer. Red is positive and blue is negative. The cross-flow
velocity vectors are also shown on the plane x = 0. One periodic box is shown in the x- and
the z-direction. In (a) the Reynolds number, based on channel half-width, h, and on half the
difference of the two wall velocities, is 400, and the streamwise and the spanwise periods are
2πh and 1.2πh, respectively. In (b), the Reynolds number, based on h and on the mean bulk
velocity, is 2000, and the streamwise and the spanwise periods are πh and 0.4πh, respectively.
Only half the height of the channel is shown in (b).
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Figure 4. ξ -isolines of the map (3.31). In all the cases the isoline −ξ is the reflection with
respect to y = 0 of the lines shown here. (a) a = 1, and ξ0/a = 0.2(0.1)0.9, increasing upwards.
(b) ξ0 = 1, and a/ξ0 = 1.1(0.4)3.5, in order of increasing flatness.

By arguments similar to those in the previous subsection, the sinuous perturbation
mode has, to lowest order in α, the form

φ̃
±
0 = φ̃

±
0,n(ξ ) sin nη, (3.33)

where n is any integer greater than zero, and the impermeability at the wall requires
that

dφ̃−
0,n

dξ

∣∣∣∣
ξ=0

= 0. (3.34)

Above the sheet, the derivative

dζ

dχ
= −i

cosh a − cos ζ

sinh a
(3.35)

only attains infinity in the limits ξ → ±∞, which map into χ = ±a +(2k +1)πi. Since
the velocity should remain regular at those points, an argument similar to the one
leading to (3.14) requires that the potential should vanish in that limit, so that

φ̃−
0,n = cosh nξ, φ̃+

0,n = Be−nξ . (3.36)

The jump conditions (3.5) and (3.6) result in

c0 = −e−2nξ0 ± i
(
1 − e−4nξ0

)1/2
, (3.37)

which is identical to (3.22). In this case the conditions to be satisfied by the varicose
and sinuous modes are identical, and so are the eigenvalues.

The flat vortex sheet at a distance H from the wall is obtained from (3.31) by
letting ξ0 = H , and a → ∞. In this limit we have α = n, to lowest order in α, and we
recover (3.30) for both the varicose and the sinuous mode.

Note that, although the magnitude of the eigenvalue does not depend on the para-
meter a, the shape of the vortex sheet does, so that (3.31) can be used to differentiate
between the effects of the wall distance and of the warping on the instability. The
imaginary part of (3.37) is plotted in figure 5(a) as a function of the minimum and
maximum heights of the sheet above the wall. It is clear from that figure that the
damping is predominantly controlled by the minimum wall distance, ymin, and it is easy
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Figure 5. Imaginary part of the instability eigenvalue (3.37), for the vortex sheets defined
by (3.31). n = 1. (a) As a function of the maximum and minimum height of the sheet.
(b) As a function of the maximum height and the area underneath the sheet. The contours are
Im(c0) = 0.1(0.1)0.9, increasing in the direction of the arrows. The dashed line is in both cases
the locus of flat sheets for which ymax = ymin.

to show that the sheet is neutrally stable as long as ymin = 0. Lifting the crest of the
streak overcomes this effect, and the streak becomes more unstable as the maximum
streak height, ymax , increases. In their viscous smooth model for streaks Schoppa
(2000) and Schoppa & Hussain (2002) observed that lifted streaks are more unstable.

A somewhat different view of the same data is figure 5(b), where the imaginary
part of the eigenvalue is plotted as a function of ymax and of the area S underneath
the vortex sheet. During the inviscid lifting of a sheet away from the wall the latter
is conserved, since no fluid can cross the vortex surface, and the point representing
the streak in this plot traverses an ascending vertical trajectory. It is interesting
that the effect of such a lifting process is to inhibit the instability, essentially because
the only way to lift the crest of a streak is to lower its valley towards the wall. The lower
line bounding the region of possible (S, ymax) combinations is S = 2πymax , and
corresponds to the area underneath flat sheets. The upper one is S = πymax , which
corresponds to the family of sheets that touch the wall, a = 0. The instability growth
rate vanishes for all the sheets in this family. The consequences of this observation
will be briefly explored in § 5.

It follows from (2.23) and (3.33) that the amplitude of the streamwise vorticity
perturbation of the sinuous mode is proportional to

Ωx ∼ J 1/2 cos nη =
| cosh a − cos ζ |

sinh a
cos nη, (3.38)

while that of the varicose mode is proportional to

Ωx ∼ J 1/2 sin nη. (3.39)

Thus, as in the case of the free vortex sheet, the streamwise vorticity of the sinuous
mode tends to concentrate at the peaks and at the valleys of the sheet, while that of
varicose mode tends to be located at the inflection points. The effect of the Jacobian,
and of the geometric deformation due to the mapping, can however be substantial, and
tends to shift the vortices to the locations where the mapping is more singular. In the
free sheets of the previous subsection those were the sharp peaks of the lifted streaks,
but here they are the valleys where the sheet approaches the wall.
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Figure 6. Streamwise vorticity distribution along the vortex sheet for the n = 1 eigenfunctions,
as a function of the spanwise coordinate z. In all cases ξ0 = 0.1 and the parameter
a = 0.2(0.2)1.4 increases in the direction of the arrows. The vorticity is in arbitrary units,
but the maximum of the jump [φ] of the perturbation potential is kept constant among cases.
(a) Sinuous mode. (b) Varicose mode.

The spanwise distribution of streamwise vorticity in the eigenfunctions is shown
in figure 6 for a family of vortex sheets with a fixed value of ξ0 but with different
values of a. Specially in the cases in which a is small, and the valley of the sheet
comes very close to the wall, the vortices of the sinuous mode are located there, with
much weaker countervortices near the top of the layer. The vortices of the symmetric
‘hairpins’ of the varicose perturbations are also in this case close to the valleys.
Although the vorticity magnitude used in the figure is arbitrary, the potential jump

[φ̃0] has been kept constant among the different traces, so that the values in the figure
are roughly proportional to the ratio, αΩx/Ωz, between the streamwise and spanwise
perturbation vorticities. Note that the stability characteristic of all the sheets used for
figure 6 are identical, in spite of the large differences among their streamwise vorticity
distributions.

We have already noted that it is difficult to make quantitative comparisons with
experimental streaks, since the velocity profile used here is very different from the
real ones, but some qualitative conclusions can be drawn. One of the salient features
of the sinuous streaks observed in experiments and simulations is the presence of
a single staggered vortex pair per longitudinal wavelength, which agrees with the
dominance of either the valley or the peak vortices in the instability eigenfunctions.
The location of the observed experimental vortices is also consistent with the valleys,
since they are generally reported to lie in the high-speed part of the streak, rather
than above its low-speed region, again as in figure 6. Also, the average height of the
centre of the vortices above the wall is y+ ≈ 20, while the streak itself is at least twice
as high (Kim, Moin & Moser 1987).

4. Higher-order corrections
We next outline the procedure to obtain the second-order corrections to the

eigenvalues of the free vortex sheet. For the sinuous mode, it follows from (2.12)
and (3.10) that the inhomogeneous term in the second-order equation (3.7) has the
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Fourier expansion

J −1φ̃
±
0 =

∞∑
m=1

g±
m sin mη, (4.1)

where

g±
m(ξ ) =

{
1
2
(2j0 − j2n)φ̃

±
0,n (m = n)

1
2
(j|m−n| − jm+n)φ̃

±
0,n (m �= n),

(4.2)

so that the solution to (3.7) can be written as

φ̃
±
2 =

∞∑
m=1

φ̃
±
2,m(ξ ) sin mη. (4.3)

Note that the summation convention is not used for repeated subscripts in this paper.
For the varicose mode, the Fourier expansion of the inhomogeneous term in (3.7) is

J −1φ̃
±
0 =

∞∑
m=0

g±
m cos mη, (4.4)

where

g±
m(ξ ) =


1
2
jnφ̃

±
0,n + j0G

± (m = 0)
1
2
(2j0 + j2n)φ̃

±
0,n + jnG

± (m > 0 and m = n)
1
2
(j|m−n| + jm+n)φ̃

±
0,n + jmG± (m > 0 and m �= n),

(4.5)

with

G− = −(−1)nφ̃−
0,n(0), G+ = (−1)n

1 + c0

1 − c0

φ̃−
0,n(0), (4.6)

and the solution to (3.7) has the form

φ̃
±
2 =

∞∑
m=0

φ̃
±
2,m(ξ ) cos mη. (4.7)

Substitution of (3.10) and (4.3), or of (3.21) and (4.7), into (3.7)–(3.9) yields(
d2

dξ 2
− m2

)
φ̃

±
2,m = g±

m, (4.8)

(1 − c0)φ̃
+
2,m + (1 + c0)φ̃

−
2,m = c2 δmn[φ̃0,n] on ξ = ξ0, (4.9)

(1 + c0)
dφ̃+

2,m

dξ
+ (1 − c0)

dφ̃−
2,m

dξ
= −c2 δmn

[
dφ̃0,n

dξ

]
on ξ = ξ0, (4.10)

where δmn is the Kronecker delta. The solvability condition for this inhomogeneous
system determines the second-order correction c2 to the eigenvalue.

The corresponding homogeneous problem is the same as the one solved for the
leading-order approximation in § 3.1, and its solution is either the sinuous pair (3.19)–
(3.20), or the varicose one (3.22)–(3.23), with n replaced by m. Since the modal
two-dimensional Laplacian operator in (4.8) is self-adjoint, Green’s formula yields[

φ̃2,m

dφ̃0,m

dξ
− dφ̃2,m

dξ
φ̃0,m

]
=

∫ ∞

0

gmφ̃0,m dξ. (4.11)
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Figure 7. Variation of the second-order correction c2 to the unstable eigenvalue, against the
corrugation parameter ξ0 for orders n = 1–20, in the wall-free case. (a,c) Sinuous mode. (b,d)
Varicose mode. (a,b) Real part of c2. (c,d) Imaginary part of c2. In all cases higher orders
correspond to weaker corrections.

Substituting (4.9) and (4.10) in the left-hand side of this equation, c2 only appears
when m = n, and the solvability condition is

c2 =

∫ ∞

0

gnφ̃0,n dξ

4

1 − c2
0

φ̃+
0,n

dφ̃+
0,n

dξ

∣∣∣∣
ξ=ξ0

. (4.12)

The detailed expressions for c2 in the sinuous and in the varicose modes are
cumbersome, and are given in Appendix B, but we should note that, in contrast to the
leading-order eigenvalue, the second-order correction involves n and ξ0 independently
rather than as the combination nξ0. Equation (4.11) with m �= n gives the magnitude
of those harmonics in the second-order corrections to the eigenfunctions. Figure 7
shows the real and imaginary parts of c2 against ξ0 for the sinuous and for the
varicose modes. It can be seen that c2 tends to zero both for ξ0 	 1 and for n 	 1.
At the leading order those two limits were connected with the K–H instability of a
flat vortex sheet, and in that case the lowest-order approximation already gives the
exact expression for the eigenvalues.

The trends of the second-order correction to the imaginary part of the eigenvalue
are opposite to those of the lowest-order solution. While the latter became more
stable with decreasing ξ0 and decreasing n, the correction behaves the other way
around, at least for ξ0 � 0.2. This suggest that for the free vortex sheet there could be
an intermediate ξ0 for which the total eigenvalue c0 + α2c2 would be most unstable.
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Figure 8. Variation of the second-order correction to the imaginary part of the unstable eigen-
value in the wall-bounded case, as a function of the minimum and maximum wall-distance of
the corrugated sheet. (a) Sinuous case. Isolines are Im(c2) = 0.02(0.02)0.12. (b) Varicose mode.
Isolines are Im(c2) = −0.04(0.02)0.16. Isolines above the heavier line are negative. (c,d) Same
data expressed as wavelengths, as defined in (4.13). (c) Sinuous mode. Isolines are λ0 = 1(1)10.
(d) Varicose mode for positive Im(c2). Isolines are λ0 = [0(1)9]. In all cases the isolines increase
in the direction of the arrows.

That turns out not to be the case. For α � 1, where the asymptotic expansion might
be expected to be of some value, the most unstable case is always the flat layer.

It is interesting to note, on the other hand, that the corrections to the varicose case
are more stable than those to the sinuous one (see figures 7c and 7d), in agreement
with those obtained by Kawahara et al. (1998) for smooth viscous streaks.

In the wall-bounded case the corrections are computed in a similar way, although
the Fourier coefficients of the Jacobian can only be easily expressed analytically
for the lowest spanwise modes. They are given at the end of Appendix B for n = 1,
and the corresponding stability corrections are plotted in figures 8(a) and 8(b). As in
the free vortex sheet, the sinuous mode is more unstable than the varicose one for
finite wavelengths. The only exception is when ymin is very small, but we have already
seen that this limit is in any case strongly stabilized by the wall and unlikely to lead
to breakdown.

Note that, at least when Im(c2) > 0, the first two terms of the eigenvalue expansion
define a scale,

λ0 = 2π

[
Im(c2)

1 − Im(c0)

]1/2

, (4.13)
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Figure 9. Variation of the unstable eigenvalues of the first two sinuous modes of a free
corrugated vortex sheet with ξ0 = 1

3
π, against the streamwise wavenumber. (a) Real part of c.

(b) Imaginary part of c. The thick curves represent the long-wave asymptotic approximations
to the eigenvalues, c = c0 + α2c2. The thin curves denote the two numerical eigenvalues
continued from the leading-order approximations c0 at α → 0. The dashed horizontal lines re-
present the short-wavelength asymptotics c = +i at α 	 1.

for the wavelength at which the growth rate achieves its asymptotic short-wavelength
value Im(c) = 1. This length scale has been plotted in figure 8(c) for the sinuous mode
in the wall-bounded case and, as in the case of the lowest-order expansion, it is seen
that the main influence is the minimum distance from the sheet to the wall. Note also
that the wavelengths implied are short, except for very lifted layers in which the growth
rate is in any case similar to a free flat sheet, giving some hope that the asymptotic
series can be trusted over a relatively wide range of wavenumbers. The results
for the varicose mode are include in figure 8(d), for comparison.

4.1. Numerical results

Both to study the behaviour at intermediate wavenumbers, and to check the accuracy
of the various asymptotic expansions, the eigenvalues of the sinuous modes of the free
vortex sheet were computed numerically for a range of wavenumbers, and for various
corrugation amplitudes. The numerical code uses fourth-order finite differences in ξ

and a Fourier sine expansion in η, and is briefly described in Appendix C.
Figure 9 shows the dependence on the wavenumber of the first two unstable

eigenvalues in the case ξ0 = 1
3
π. Recall that this was the sheet which was judged

in figure 3(c) to be geometrically closest to the experimental streaks. In the figure,
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the thick curves represent the long-wavelength asymptotics, c = c0 + α2c2, the thin
curves represent the numerically computed eigenvalues, and the dashed horizontal
lines denote the short-wavelength behaviour, c = i. It can be seen that the long-wave
approximation is in excellent agreement with the numerical values up to relatively
large streamwise wavenumbers.

It can also be seen from the scale in figure 9(b) that, even for these relatively strong
corrugations, the effect of the curvature is relatively small, and that the growth rate
is fairly close to its K–H value at all wavenumbers. This is even more apparent for
the higher spanwise orders, of which only n = 2 is shown in the figure.

The analysis presented in this section can be carried out in the same way for
the wall-bounded case in § 3.3, but it is unlikely to provide new information. Part
of the interest of the present section is to ascertain that the asymptotic series can
be consistently extended to higher orders, which is a well-known pitfall in this sort
of analysis. Once this has been checked for the free vortex layer, and since the the
expansion procedure is the same in both cases, there is no reason to doubt that it
would also be true for the wall-bounded one.

5. Discussion and conclusions
We have analysed the unstable eigensolutions of a corrugated vortex sheet, and

shown that they in general contain streamwise vorticity, which becomes dominant both
when the corrugation is large and when the sheet approaches a wall. Such instabilities
are therefore good candidates for the generation mechanism of streamwise vortices in
the near-wall layer of turbulent flows. We mentioned in the introduction the numerical
and experimental evidence for their occurrence in natural and model flows. We shall
now centre on the similarities and differences between the computed eigenfunctions
and fully nonlinear solutions, to inquire to what extent the nonlinear structures can
be considered saturated stages of the instabilities studied here.

Schoppa & Hussain (1997, 1998) followed numerically the evolution of the unstable
streaks in minimal plane Poiseuille flow to obtain transient structures which were quite
similar to those observed in near-wall turbulence. More recently, Toh & Itano (1999,
2001) investigated the nonlinear saturation of the instability of a particular class of
streaks in minimal Poiseuille flow, and observed that a system approaches a three-
dimensional nonlinear permanent travelling-wave solution, i.e. a fixed point in phase
space, whose spatial structure is very similar to that in Schoppa & Hussain (1997,
1998). Equivalent fixed points, although with a different symmetry with respect to the
channel centreline, had been obtained exactly in Poiseuille flows using the Newton
method by Waleffe (1998, 2001), who noted the similarity between near-wall coherent
structures and the spatial structure of the fixed points. The translation velocity of
Toh & Itano’s (1999, 2001) travelling wave is very close to the volume-averaged bulk
velocity of the flow in the channel. Itano & Toh (2001) interpreted the instability
of their streaks as the approach of the system to the unstable fixed point along its
stable manifold. The bursting process would then be the succeeding escape along the
unstable manifold, possibly related to subcritical transition through streak breakdown
(Reddy et al. 1998). Fixed points of the same type have been obtained using different
techniques by Jiménez & Simens (2001). Kawahara & Kida (2001) later identified Toh
& Itano’s (1999, 2001) wave as the same kind of fixed point as Nagata’s (1990) older
three-dimensional nonlinear (lower-branch) stationary solution for plane Couette flow.
Since the former was found as the nonlinearly saturated state of a streak instability,
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it is interesting to compare both solutions with our analytical eigensolution for the
corrugated vortex sheet.

Figures 10(a) and 10(b) (see p. 326) show respectively Nagata’s (1990) and Toh &
Itano’s (1999, 2001) permanent waves. They are printed next to figure 3 to facilitate
comparison. Both solutions have been recomputed for the purpose of this paper
using a shooting method similar to the one in Toh & Itano (1999, 2001). Because the
streamwise vorticity is observed in smooth streak models to be concentrated around
the critical layer (Schoppa & Hussain 1997; Kawahara et al. 1998; Itano & Toh 2001),
we have drawn in the figure only the surface where the streamwise velocity component
u(x, y, z) is equal to the translation velocity of the equilibrium waves. To make the
representation comparable with the eigenfunctions in figure 3, the streamwise vorticity
is drawn on that surface, and the perturbation cross-flow velocities are shown at x = 0.
It is clear from the figure that the two nonlinear equilibrium solutions are qualitatively
very similar. Waleffe (1998) also reported a close similarity between (upper-branch)
three-dimensional nonlinear equilibrium solutions for plane Couette and Poiseuille
flows under fixed-stress wall-boundary conditions. The spatial structures in figure 10
are characterized by streamwise vortices of alternating sign in a staggered longitudinal
array along the low-speed streak, and they broadly resemble the coherent structures
observed in near-wall turbulence (Stretch 1990; Jeong et al. 1997). The most obvious
difference between the Couette and Poiseuille equilibrium solutions is that, while
the former is symmetric between crests and valleys, the latter is not, which is an
obvious consequence of the different symmetries of the two problems. Differences
between minimal turbulent Couette and Poiseuille flows were reported in Schoppa
& Hussain (1998). It is also apparent from comparing figure 10 with figure 3(c)
that the nonlinear solutions are related to the unstable sinuous eigenfunctions, in
agreement with the experiments quoted above for smooth velocity models. The main
difference between the linear and the nonlinear solutions is the presence in the latter
of somewhat stronger vortices near the valleys, particularly visible in the velocity
field in figure 10(b). This is also true of experimental streaks, and was attributed by
Schoppa & Hussain (1997) to vortex stretching due to the bending of the streak.
Our discussion in § 3.3, in which vortex stretching is absent, while the intensification
of the valley vortices is traced to the geometric factor coming from the Jacobian,
gives strong support to the alternative model that the strengthening is due to the
constraining effect of the nearby wall on the transverse velocities.

An interesting question is whether the nonlinear phase of the corrugated sheet
instability discussed in this paper would lead to an analytical interpretation of the
above nonlinearly saturated states, but this requires a completely different approach
from the one used here, and is left for future studies.

In summary, we have presented in this work analytical eigensolutions for the
inviscid instability of a corrugated vortex sheet. We have shown that the transverse
curvature is always stabilizing in the case of free sheets. The effect is more complicated
in the vicinity of a wall, because the presence of the wall itself is stabilizing, and the
warping of the layer is accompanied by lifting of part of the sheet away from the wall.
In any case, the instability of these warped sheets is always weaker than the classical
Kelvin–Helmholtz instability of plane free vortex layers. In both the free and the
wall-bounded cases we have linked the instabilities to oblique Kelvin–Helmholtz
waves in appropriate related flows, and we have shown that the local intensification
of streamwise vorticity can be traced to the geometric properties of the sheet. In
general we find that the stability characteristics of our wall-bounded models sheets
are primarily controlled by their minimum distance to the wall.
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The sinuous mode is, in all cases of interest, more unstable than the varicose
one, although it is interesting that the difference only appears in the higher-order
wavenumber corrections. This behaviour is reminiscent of that of a vortex sheet of el-
liptical cross-section, which was analysed by Crighton (1973). A periodic array of such
sheets could perhaps be considered as a very rough model for an extremely corrugated
vortex layer, and can actually be constructed from isolines of the mapping (3.31) with
|ξ | > a. The instability modes of such jets are also oblique, and their growth rates
are also identical for the sinuous and varicose symmetries in the limit of very long
wavelengths. The finite-wavelength behaviour found here is in agreement with that of
smooth streak models, in which the sinuous mode is consistently more unstable than
the varicose one (Schoppa & Hussain 1997; Kawahara et al. 1998).

An interesting aspect of the present simplified model is the conclusion from figure
5(b) that the inviscid lifting of a streak stabilizes it by forcing parts of the shear layer
against the wall, although the streak becomes more unstable when its maximum height
is increased for the fixed minimum wall distance. This is contrary to observations
in turbulent flows, and is linked to the conservation of the volume underneath the
sheet. It can be bypassed either by considering three-dimensional lifting, which allows
axial drawing of fluid along the streak, or by viscous diffusion. The first process
begs the question of how the three-dimensionality is generated in the absence of an
instability, but the second one is interesting because it naturally introduces a critical
Reynolds number, and therefore a critical streak size. The predominant size of the
streaks, and in particular the commonly agreed value of 100 wall units, is clearly a
Reynolds number, but it is intuitively a little too high to be taken as a threshold for
an inviscid instability such as Kelvin–Helmoltz. It would make more sense if it could
be considered as a measure of the dimensionless distance from the wall at the lowest
point of the streak. In essence, what the present results suggest is that advective
lifting by itself is not enough to destabilize a streak, and that the corrugation of
the wall layer grows until viscous diffusion has separated it enough from the wall.
Any quantitative estimate of the resulting threshold is of course beyond the present
inviscid model.

We have noted that, despite the drastic simplification of the smooth velocity
distribution by a sharp velocity jump, the structure of the eigenfunctions remarkably
similar both to the numerically computed eigenfunctions of smooth flow models, and
to the nonlinear flow structures observed in full simulations of near-wall streaks. It
is therefore likely that the essential instability mechanism of the more realistic flows
are captured by our simpler model, which could therefore be used to explore in detail
its properties, eventually perhaps leading to the formulation of more efficient control
strategies. The above discussion of the qualitative effects of the different geometrical
parameters of the warped sheets is an example of such an exploration, which would
have taken considerably more work if it had been undertaken using more general
models.
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Appendix A. Short-wavelength instability for α 	 1

When the streamwise wavelength of the perturbation is short compared with the
spanwise length scale of the corrugation, the η-derivatives can be neglected, and (2.14)
may be rewritten as (

∂2

∂ξ 2
− α2J −1

)
φ̃ = 0. (A 1)

Since the Jacobian J (ξ, η) in (2.11) is not negative, we can write the solution as a
WKB exponential expansion of the type

φ̃0 = J 1/4

{
A(η) exp

(
+α

∫ ξ

ξ0

J −1/2 dξ

)
+ B(η) exp

(
−α

∫ ξ

ξ0

J −1/2 dξ

)}
, (A 2)

where A(η) and B(η) are smooth periodic functions. In order for the velocity to decay
at y → −∞, i.e. ζ → (2k + 1)π, the solution for ξ < ξ0 should be

φ̃−
0 = A(η)J 1/4 exp

(
−α

∫ ξ0

ξ

J −1/2 dξ

)
, (A 3)

because J −1/2 → + ∞ as y → − ∞, while the solution for ξ > ξ0 should be

φ̃+
0 = B(η)J 1/4 exp

(
−α

∫ ξ

ξ0

J −1/2 dξ

)
, (A 4)

because J −1/2 → 1 as y → ∞. By substituting (A 3) and (A 4) into the matching
conditions, (2.18) and (2.19), we have

(1 − c0)B(η) + (1 + c0)A(η) = 0, (A 5)

−(1 + c0)B(η) + (1 − c0)A(η) = 0. (A 6)

These equations determine the eigenvalues as

c0 = ±i, (A 7)

and the corresponding eigenvectors as

A

B
= ±i, (A 8)

both of which are independent of ξ0 and α and coincide with those for the K–H
instability of a flat vortex sheet.

Appendix B. Determination of the second-order corrections to the eigenvalues
in the long-wave limit

The numerator and the denominator of the right-hand side of (4.12) can be
expressed for the sinuous and for the varicose modes as follows. In the case of the
sinuous mode, by using (2.12), (3.19), (3.20) and (4.2), we obtain∫ ∞

0

gnφ̃0,n dξ = e−2nξ0h−
n I−

n + sinh2 nξ0 h+
n I+

n , (B 1)

where

h−
n = 1 − 2e−2nξ0 + e−4nξ0 − 2e−2nξ0 sinh 2nξ0 − i 25/2e−2nξ0 sinh1/2 2nξ0 sinh nξ0, (B 2)

h+
n = 1 + 2e−2nξ0 + e−4nξ0 − 2e−2nξ0 sinh 2nξ0 + i 25/2e−2nξ0 sinh1/2 2nξ0 cosh nξ0, (B 3)
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and

I−
n =

∫ ξ0

0

(
1 + 2

e−ξ

sinh ξ
− 2

e−2nξ

tanh ξ

)
sinh2 nξ dξ, (B 4)

I+
n =

∫ ∞

ξ0

(
1 + 2

e−ξ

sinh ξ
− 2

e−2nξ

tanh ξ

)
e−2nξ dξ. (B 5)

The integrals (B 4) and (B 5) can be evaluated analytically. For example, we have, for
the fundamental mode n = 1,

I−
1 = − 3

8
+ 1

2
cosh 2ξ0 − 1

4
sinh 2ξ0 − 1

8
e−4ξ0, (B 6)

I+
1 = 1

2
e−2ξ0 + 1

2
e−4ξ0 . (B 7)

By use of (3.19) and (3.20), on the other hand, we have

4

1 − c2
0

φ̃+
0,n

dφ̃+
0,n

dξ

∣∣∣∣
ξ=ξ0

= −i 23/2n e−2nξ0 sinh1/2 2nξ0 sinh nξ0. (B 8)

In the case of the varicose mode, by using (2.12), (3.22), (3.23) and (4.5), we obtain∫ ∞

0

gnφ̃0,n dξ = e−2nξ0h−
n I−

n + cosh2 nξ0 h+
n I+

n , (B 9)

where

h−
n = 1 + 2e−2nξ0 + e−4nξ0 − 2e−2nξ0 sinh 2nξ0 − i 25/2e−2nξ0 sinh1/2 2nξ0 cosh nξ0, (B 10)

h+
n = 1 − 2e−2nξ0 + e−4nξ0 − 2e−2nξ0 sinh 2nξ0 + i 25/2e−2nξ0 sinh1/2 2nξ0 sinh nξ0, (B 11)

and

I−
n =

∫ ξ0

0

{(
1 + 2

e−ξ

sinh ξ
+ 2

e−2nξ

tanh ξ

)
cosh nξ − 4

e−nξ

tanh ξ

}
cosh nξ dξ, (B 12)

I+
n =

∫ ∞

ξ0

(
1 + 2

e−ξ

sinh ξ
+ 2

e−2nξ

tanh ξ
− 4

e−nξ0

cosh nξ0 tanh ξ

)
e−2nξ dξ. (B 13)

By use of (3.22) and (3.23), we have

4

1 − c2
0

φ̃+
0,n

dφ̃+
0,n

dξ

∣∣∣∣
ξ=ξ0

= −i 23/2n e−2nξ0 sinh1/2 2nξ0 cosh nξ0. (B 14)

The corrections for the wall-bounded mapping (3.31) are computed in a similar
way, using the corresponding eigenfunctions and Jacobian. The coefficients of the
Fourier expansion (2.12) cannot in this case be easily expressed in closed form,
although simple formulas can be found for some particular orders. Those needed
for the computation of the corrections to the n = 1 eigenvalue are given below for
reference:

j0 =
sinh 2a

2 sinh(a + ξ ) sinh(a − ξ )
,

j1 =
2 sinh a cosh ξ

sinh(a + ξ ) sinh(a − ξ )
,

j2 = −4e−a sinh a +
sinh 2a

sinh(a + ξ ) sinh(a − ξ )
.


(B 15)
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Appendix C. Numerical computation of the eigenvalues for finite α

We consider solutions to equation (2.14) for finite α. When we write the sinuous
velocity potential, which is an odd function with respect to η = 2kπ, as

φ̃± =

∞∑
m=1

φ̃±
m(ξ ) sin mη (C 1)

and substitute (C 1) into (2.14), we have(
d2

dξ 2
− m2

)
φ̃±

m − α2f ±
m = 0, (C 2)

where

f ±
m (ξ ) = 1

2
j0φ̃

±
m + 1

2

∞∑
k=1

(j|m−k| − jm+k)φ̃
±
k . (C 3)

From (2.18) and (2.19), the matching conditions to be imposed are

(1 − c)φ̃+
m + (1 + c)φ̃−

m = 0 on ξ = ξ0, (C 4)

and

(1 + c)
dφ̃+

m

dξ
+ (1 − c)

dφ̃−
m

dξ
= 0 on ξ = ξ0. (C 5)

The boundary condition at ξ = 0 is

φ̃−
m = 0, (C 6)

which ensures the regularity of the velocity at (ξ, η) = (0, 2kπ), and the decay of the
velocity at y = −∞, i.e. (ξ, η) = (0, (2k + 1)π). For large ξ , on the other hand, J −1 ≈ 1

and thus f +
m ≈ φ̃+

m, so that (C 2) may be rewritten as(
d2

dξ 2
− m2 − α2

)
φ̃+

m = 0. (C 7)

Equation (C 7) has a solution, which decays at ξ → ∞

φ̃+
m ∝ exp(−

√
m2 + α2 ξ ). (C 8)

Therefore, we consider the finite domain ξ ∈ (0, 2π), and the boundary condition(
d

dξ
+

√
m2 + α2

)
φ̃+

m = 0 (C 9)

is imposed at ξ = 2π to match the numerical solution with the analytical one (C 8).
We numerically solve the eigenvalue problem, (C 2)–(C 6) and (C 9) by using a

fourth-order finite difference in the ξ -coordinate. For the case of ξ0 = 1
3
π, the

numerical computation is carried out with 61 uniform grid points in ξ (grid spacing
is 0.105) and 50 Fourier modes in η.
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